

US009103994B2

US 9,103,994 B2

Aug. 11, 2015

(12) United States Patent

Jones et al.

(54) OPTICAL FIBER GUIDE APPARATUSES FOR SPLICE CONNECTOR INSTALLATION TOOLS, AND RELATED ASSEMBLIES AND METHODS

(75) Inventors: **Ashley W. Jones**, Denton, TX (US);

Daniel Leyva, Jr., Arlington, TX (US); Michael G. Thornton, Jr., Keller, TX

(US)

(73) Assignee: Corning Cable Systems LLC, Hickory,

NC (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 LLS C 154(b) by 287 days

U.S.C. 154(b) by 287 days.

(21) Appl. No.: 13/362,501

(22) Filed: **Jan. 31, 2012**

(65) Prior Publication Data

US 2013/0195416 A1 Aug. 1, 2013

(51) Int. Cl.

G02B 6/00 (2006.01)

G02B 6/36 (2006.01)

G02B 6/255 (2006.01)

G02B 6/38 (2006.01)

G02B 6/44 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

CPC G02B 6/00; G02B 6/2555; G02B 6/38; G02B 6/3801; G02B 6/3803; G02B 6/3806; G02B 6/3897; G02B 6/4439

See application file for complete search history.

(56) References Cited

(10) Patent No.:(45) Date of Patent:

U.S. PATENT DOCUMENTS

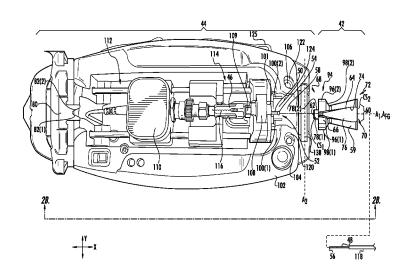
1,139,152 A 4,413,763 A 4,621,754 A 4,627,561 A 4,674,666 A	11/1983 11/1986 12/1986 6/1987	Long et al. Balyasny et al. Balyasny
4,681,398 A		Bailey et al.
	(Continued)	

FOREIGN PATENT DOCUMENTS

DE	3313013 A1	10/1984
DE	9316137 U1	12/1993
	(Cont	inued)

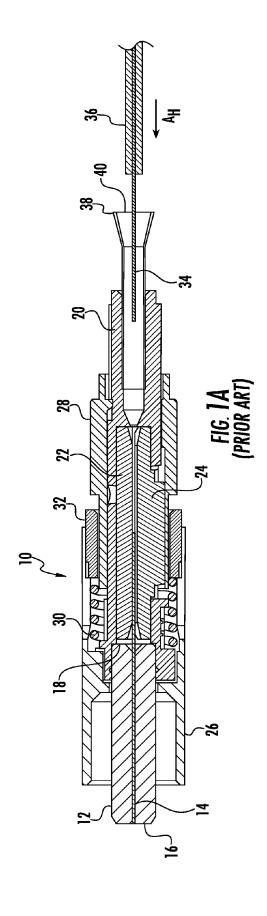
OTHER PUBLICATIONS

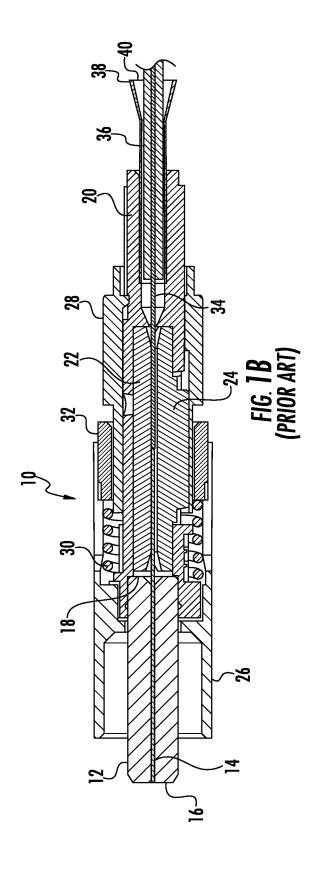
European Patent Office Search Report, Application No. 13152502. 4-1562, May 7, 2013, 9 pages.

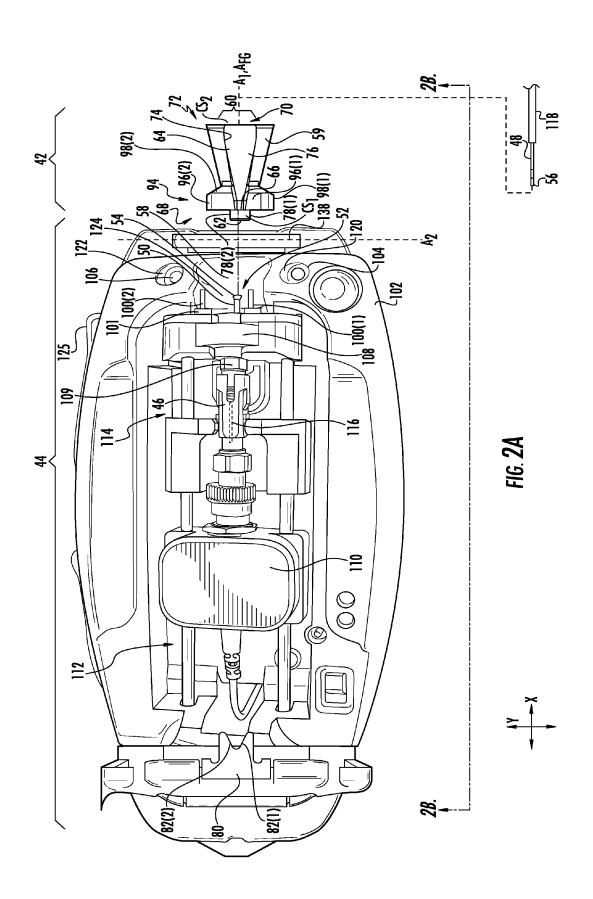

(Continued)

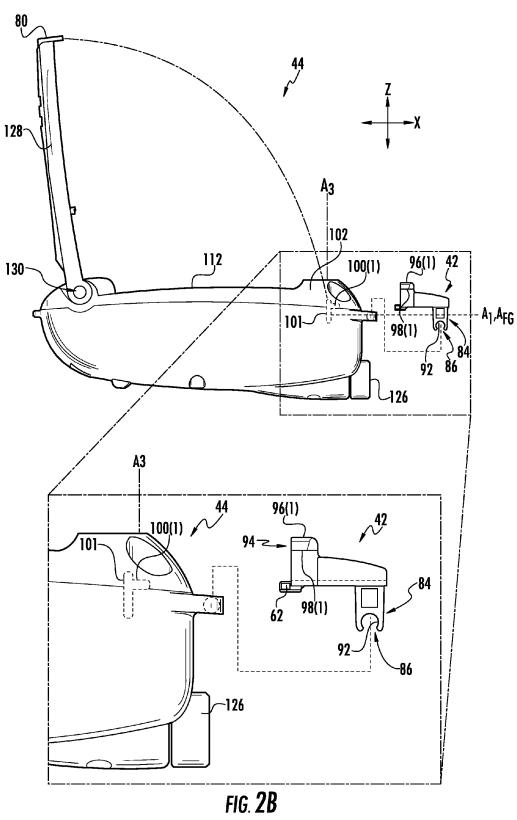
Primary Examiner — Akm Enayet Ullah Assistant Examiner — Michael Mooney

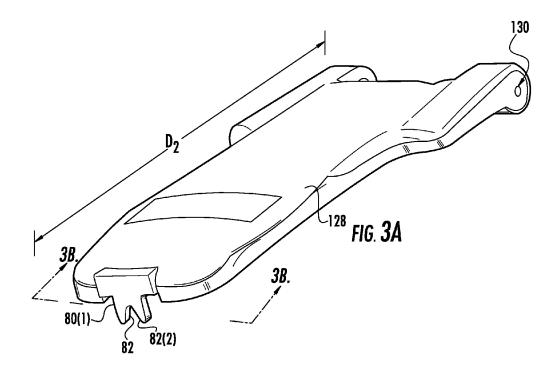
(57) ABSTRACT

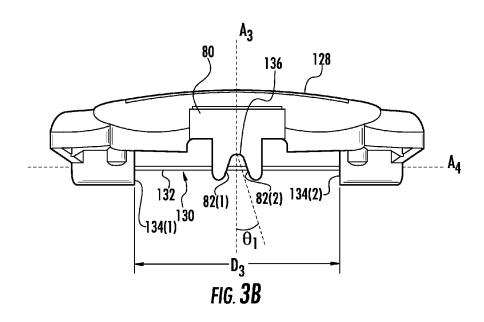

Optical fiber guide apparatuses for splice connector installation tools, and related assemblies and methods are disclosed. The optical fiber guide apparatus may include at least one alignment member to align an optical fiber guide with a splice connector installation tool. The optical fiber guide is configured to guide an optical fiber to a fiber entry of a fiber optic connector installed in the splice connection installation tool. In this manner, when the alignment member is alignably interfaced with the splice connector installation tool, the optical fiber guide apparatus is also aligned with the splice connector installation tool to accurately guide the optical fiber to the fiber optic connector installed in the splice connector installation tool.

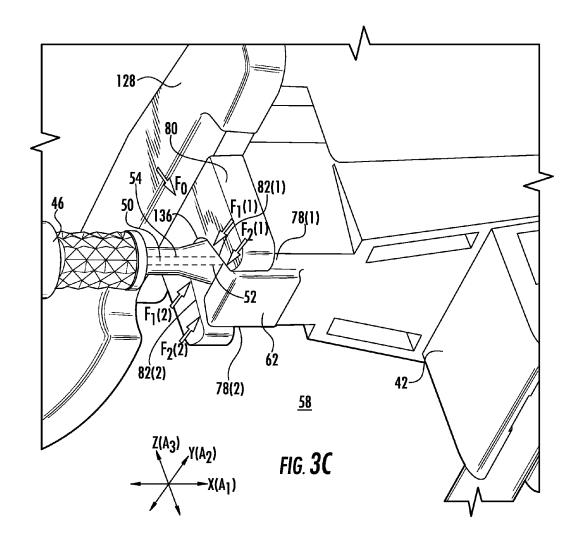

28 Claims, 17 Drawing Sheets

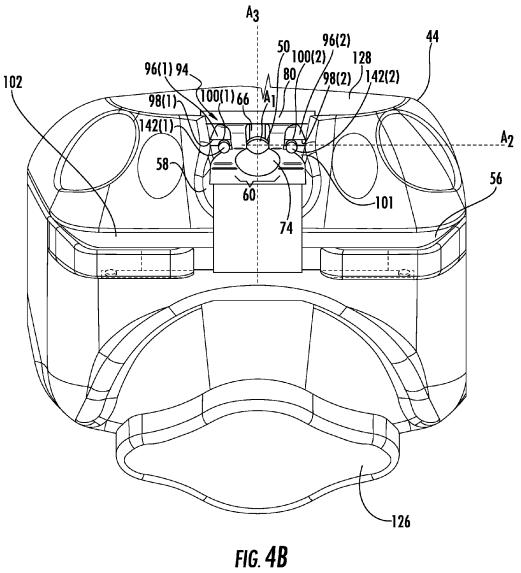


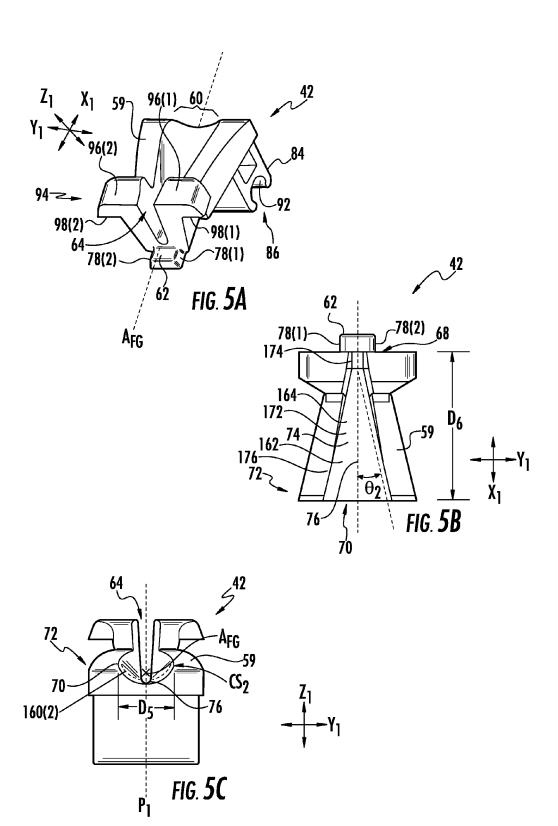

US 9,103,994 B2 Page 2

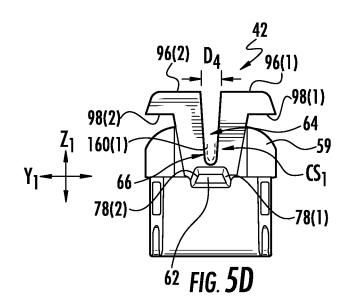

(56)	References Cited	2009/0252460 A1 10/2009 Ohtsuka et al
11211	PATENT DOCUMENTS	2010/0187276 A1 7/2010 Ohmura et al.
0.3.1	TATENT DOCUMENTS	2010/0301503 A1 12/2010 Schratz et al
4,688,707 A	8/1987 Szostak et al.	2011/0079930 A1 4/2011 Saito et al
4,755,018 A	7/1988 Heng et al.	2011/0150409 A1 6/2011 Childers et al 385/137
4,923,274 A	5/1990 Dean	
4,930,827 A	6/1990 Tihansky	FOREIGN PATENT DOCUMENTS
5,031,321 A	7/1991 Briscoe	TOREIGHTIMENT DOCUMENTS
5,040,867 A	8/1991 de Jong et al.	EP 2375270 A2 10/2011 G02B 6/36
5,108,021 A	4/1992 Vines	GB 2046242 A 11/1980
5,125,549 A	6/1992 Blackman et al.	SU 920012 A1 4/1982
5,261,020 A	11/1993 De Jong et al 385/76	WO 2008134507 A1 11/2008
5,301,868 A	4/1994 Edwards et al.	WO 2009051918 A1 4/2009
5,394,496 A	2/1995 Caldwell et al.	
5,408,558 A	4/1995 Fan	OTHER PUBLICATIONS
5,524,350 A	6/1996 Boland	
5,668,902 A	9/1997 Kurata	Notice of Allowance for U.S. Appl. No. 12/541,637, mailed Mar. 13,
6,099,392 A	8/2000 Wiegand et al.	2012, 7 pages.
6,173,097 B1	1/2001 Throckmorton et al.	Final Office Action for U.S. Appl. No. 12/541,637, mailed Jan. 5,
6,202,310 B1	3/2001 Linden	
6,379,054 B2	4/2002 Throckmorton et al.	2012, 7 pages.
6,439,780 B1	8/2002 Mudd et al 385/83	Non-final Office Action for U.S. Appl. No. 12/541,637, mailed Sep.
6,467,667 B1	10/2002 Durian et al.	14, 2011, 7 pages.
6,601,199 B1	7/2003 Fukuda et al.	European Search Report for European patent application No.
6,816,661 B1	11/2004 Barnes et al 385/134	08014476.9, mailed Nov. 5, 2008, 5 pages.
6,901,199 B2	5/2005 Tabeling	Non-final Office Action for U.S. Appl. No. 13/112,434, mailed Aug.
6,931,193 B2	8/2005 Barnes et al.	20, 2013, 11 pages.
7,070,078 B2	7/2006 Song 10/2006 Watte et al.	Final Office Action for U.S. Appl. No. 13/112,434, mailed Feb. 14,
7,116,882 B2 7,280,733 B2	10/2006 watte et al. 10/2007 Larson et al 385/139	2014, 14 pages.
7,756,381 B2	7/2010 Bleus et al 383/139	Advisory Action for U.S. Appl. No. 13/112,434, mailed May 8, 2014,
8,622,270 B2	1/2014 Barnes et al.	3 pages.
8,678,260 B2	3/2014 Barnes et al.	Non-final Office Action for U.S. Appl. No. 13/112,434, mailed Jun.
2002/0003158 A1	1/2002 Nakae	20, 2014, 19 pages.
2002/0023356 A1	2/2002 Skinner et al.	Non-final Office Action for U.S. Appl. No. 13/115,228, mailed Jan. 8,
2002/0150372 A1	10/2002 Schray	2014, 9 pages.
2002/0179666 A1	12/2002 Buckley et al.	Final Office Action for U.S. Appl. No. 13/115,228, mailed Jun. 12,
2003/0113087 A1	6/2003 Lee et al.	2014, 10 pages.
2004/0099121 A1	5/2004 Itano et al.	International Search Report for PCT/US2011/061756 mailed Feb.
2004/0228596 A1	11/2004 Tabeling	23, 2012, 4 pages.
2007/0047897 A1	3/2007 Cooke et al.	International Preliminary Report on Patentability for PCT/US2011/
2008/0019646 A1	1/2008 DeJong 385/99	
2008/0166094 A1	7/2008 Bookbinder et al.	061756 mailed Jun. 6, 2013, 6 pages.
2008/0187278 A1	8/2008 Young 385/134	Final Office Action for U.S. Appl. No. 13/112,434 mailed Dec. 15,
2008/0240666 A1	10/2008 Brinson et al.	2014, 19 pages.
2008/0247710 A1*	10/2008 Oike et al 385/78	ab. 1. 44
2009/0169163 A1	7/2009 Abbott, III et al.	* cited by examiner

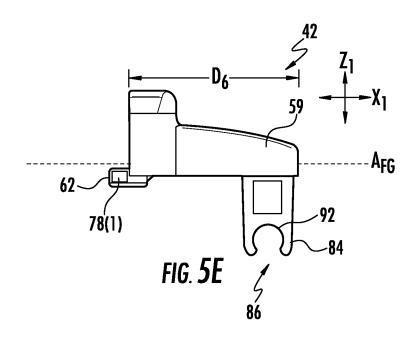




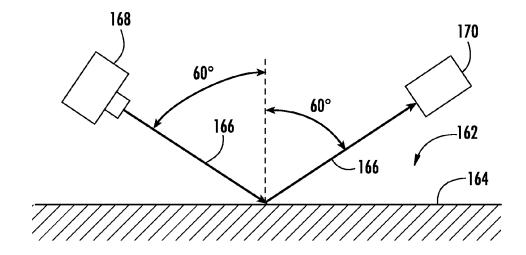
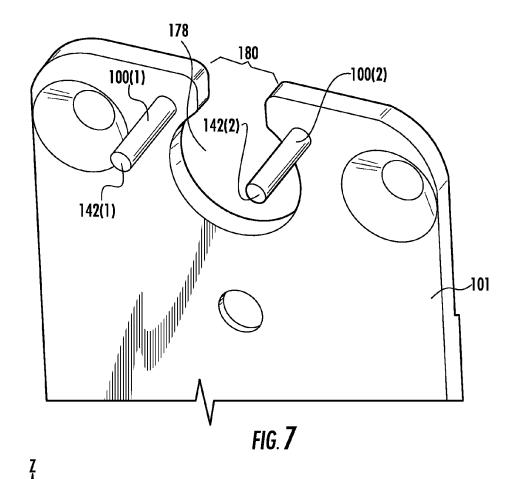
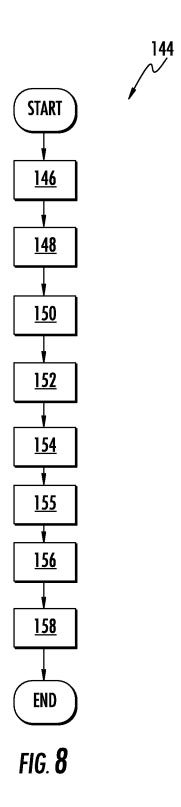
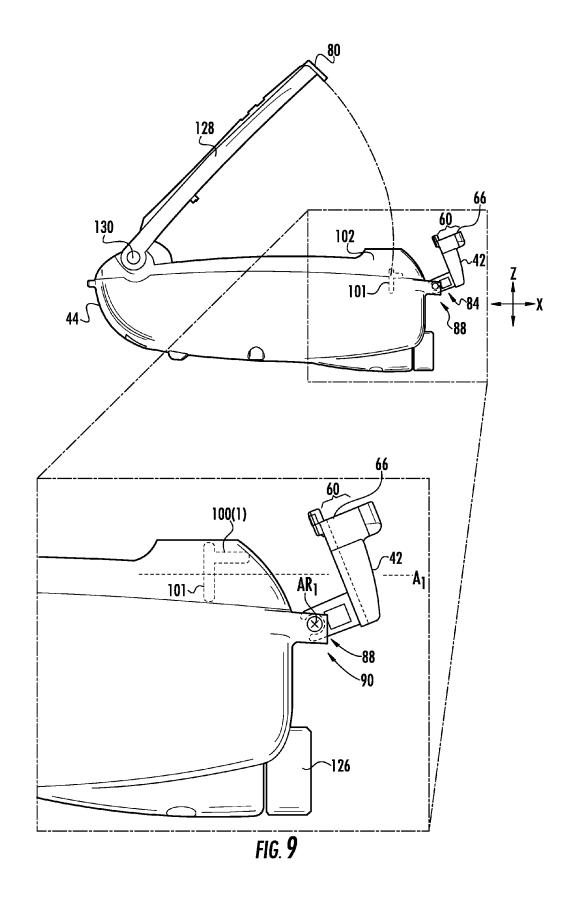
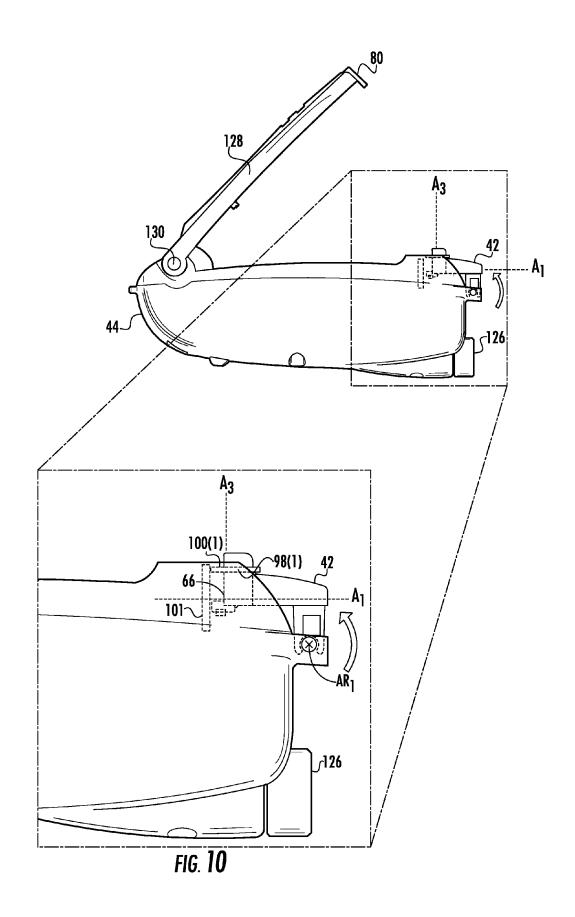


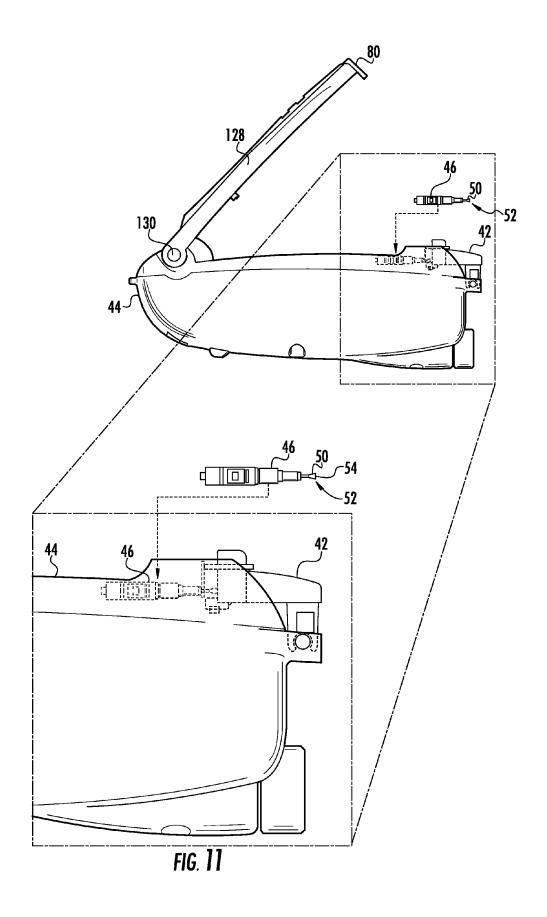


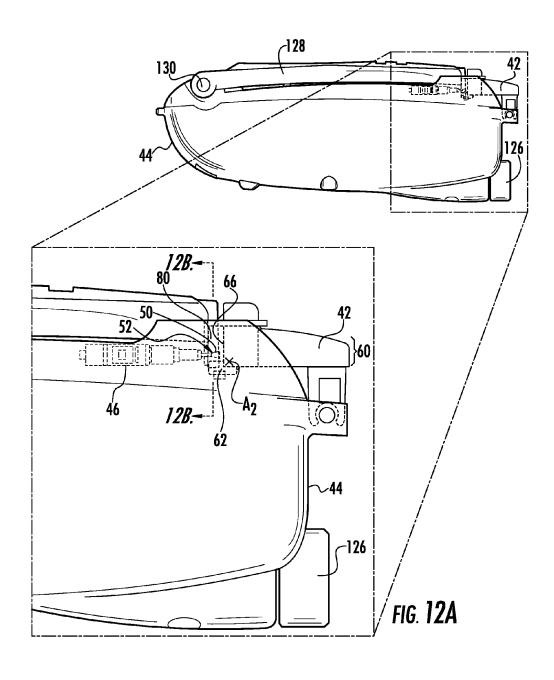


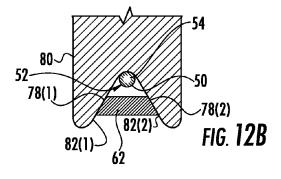


Aug. 11, 2015


FIG. **6**





Aug. 11, 2015

OPTICAL FIBER GUIDE APPARATUSES FOR SPLICE CONNECTOR INSTALLATION TOOLS, AND RELATED ASSEMBLIES AND METHODS

RELATED APPLICATION

This application is related to U.S. patent application Ser. No. 13/362,474, filed on even date herewith and titled "Detachable Optical Fiber Guides For Splice Connector ¹⁰ Installation Tools, and Related Assemblies and Methods," which is incorporated herein by reference in its entirety.

BACKGROUND

1. Field of the Disclosure

The technology of the disclosure relates to terminating fiber optic mechanical splice connectors to an optical fiber, and more particularly, to a splice connector installation tool and fiber optic mechanical splice connectors containing stub 20 optical fibers.

2. Technical Background

Optical fibers are useful in a wide variety of applications, including the telecommunications industry. Optical fibers can be employed for voice, data and video transmissions. With the 25 ever increasing and varied use of optical fibers, apparatus and methods have been developed for coupling optical fibers to one another outside a controlled environment of a factory setting, commonly referred to as "field installation" or "in the field." Examples of "field installations" include a telephone 30 central office, an office building, and outside plant terminals. In order to efficiently couple optical signals transmitted by the optical fibers, a fiber optic connector must not significantly attenuate, reflect, or otherwise alter the optical signals. In addition, fiber optic connectors for coupling optical fibers 35 must be relatively rugged and adapted to be connected and disconnected a number of times in order to accommodate changes such as moves, adds or changes in the optical transmission path that may occur over time.

Although fiber optic connectors are efficiently and reliably 40 mounted upon the end portion of an optical fiber in a factory setting, it is often desirable to install fiber optic connectors in the field. In other words, the end user can install the fiber optic connector on the end portion of an optical fiber in the field. Installing fiber optic connectors in the field can advanta- 45 geously minimize cable lengths and optimize cable management and routing. In this regard, installation tools have been developed to facilitate the splice termination of one or more optical fibers to a fiber optic connector, and particularly, to enable the splice termination of one or more field optical 50 fibers to a mechanical splice connector. Examples of conventional installation tools for performing mechanical splices in the field are described in U.S. Pat. Nos. 5,040,867; 5,261,020; 6,816,661; and 6,931,193. In particular, U.S. Pat. Nos. 6,816, 661 and 6,931,193 describe a UNICAM® installation tool 55 available from Corning Cable Systems LLC of Hickory, N.C., designed specifically to facilitate mounting the UNICAM® family of fiber optic connectors upon the end portions of one or more field optical fibers.

FIGS. 1A and 1B respectively illustrate an exemplary 60 field-installable, mechanical splice fiber optic connector 10 (also referred to as "mechanical splice connector" and "fiber optic connector 10") suitable for use with the installation tool before and after termination. The fiber optic connector 10 may be a member of the UNICAM® family of mechanical 65 splice connectors. As shown in FIGS. 1A and 1B, the mechanical splice connector 10 includes a connector ferrule

2

12 defining a lengthwise, longitudinal bore for receiving and securing a stub optical fiber 14 in a known manner, such as by an adhesive. The forward end 16 (also referred to herein as the "end face") of the ferrule 12 is typically precision polished such that the stub optical fiber 14 is flush with (as shown) or slightly protruding from the end face 16 of the ferrule 12. The rear end 18 of the ferrule 12 is inserted into and secured within the forward end of a ferrule holder 20 so that the stub optical fiber 14 extends rearwardly a predetermined distance from the ferrule 12 between a pair of opposed splice components 22, 24 disposed within the ferrule holder 20. In turn, the ferrule holder 20, including the ferrule 12 and splice components 22, 24, are disposed within a connector housing 26.

With continuing reference to FIGS. 1A and 1B, a cam 15 member 28 is movably mounted to the ferrule holder 20 and the connector housing 26 for engaging a keel portion of the lower splice component 24. If desired, the ferrule 12, the ferrule holder 20 and the cam member 28 may be biased relative to the connector housing 26, for example by a coil spring 30, to ensure physical contact between the end face 16 of the ferrule 12 and the end face of an opposing ferrule in a mating fiber optic connector or optical device (not shown). Finally, a spring retainer 32 may be disposed between the connector housing 26 and a medial portion of the cam member 28 and fixed to the connector housing 26 so as to retain one end of the spring 30 relative to the connector housing 26. As a result, the ferrule 12, the ferrule holder 20 and the cam member 28 are biased forwardly, yet permitted to piston rearwardly relative to the connector housing 26.

To make a splice within a connector, a field optical fiber 34 is inserted into a rear end of the ferrule holder 20 opposite the ferrule 12 and the stub optical fiber 14 as illustrated by the horizontal directional arrow \mathbf{A}_H in FIG. 1A. Typically, the field optical fiber 34 is coated or tight-buffered with a buffer 36 that is stripped back to expose a predetermined length of the end of the field optical fiber 34. The mechanical splice connector 10 may be further provided with a crimp tube 38 including a fiber entry 40. The crimp tube 38 retains and strain relieves the buffer 36 of the field optical fiber 34. With a portion of the buffer 36 removed, the field optical fiber 34 can be inserted and advanced into the rear of the mechanical splice connector 10 between the splice components 22, 24 until the end portion of the field optical fiber 34 makes physical contact with the end portion of the stub optical fiber 14. Thereafter, the cam member 28 is actuated by moving or rotating the cam member 28 relative to the ferrule holder 20 about the longitudinal axis of the connector 10, to engage the keel on the splice component 24 and thereby force the lower splice component 24 in the direction of the upper splice component 22. Movement of the lower splice component 24 causes the end portion of the stub optical fiber 14 and the end portion of the field optical fiber 34 to seat within the V-shaped groove formed in the lower splice component 24, thereby aligning and securing the field optical fiber 34 relative to the stub optical fiber 14 between the splice components. Accordingly, the field optical fiber 34 is optically coupled to the stub optical fiber 14 as a mechanical splice for transmitting an optical signal between the field optical fiber 34 and the stub optical fiber 14.

To make an acceptable mechanical splice, a clean and undamaged optical fiber 34 should be inserted into the fiber optic connector 10 for achieving a satisfactory termination with the stub optical fiber 14 within the connector. A conventional practice is to insert the optical fiber 34 manually within the fiber optic connector 10 in the installation tool by aligning the optical fiber 34 with a crimp tube 38 of the fiber optic connector 10. This conventional practice is generally suffi-

cient for highly-trained and experienced technicians; however, less experience technicians may lack the know-how and/or have difficulty make high-quality terminations in the field. Moreover, the conventional practice typically includes re-cleaving a damaged optical fiber 34 and/or cleaning optical 5 fibers 34 contaminated with debris when the optical fibers 34 are not properly inserted in the fiber optic connector 10 on the first attempt. In other words, depending on the skill, eyesight, and dexterity of the technician, as well as ambient light, alignment and insertion of the optical fiber 34 in the fiber 10 optic connector 10 may require more than one attempt. Consequently, there is an unresolved need for devices and methods that provide high-quality terminations in the field by the technician.

SUMMARY OF THE DETAILED DESCRIPTION

Embodiments disclosed herein include optical fiber guide apparatuses for splice connector installation tools, and related assemblies and methods. The optical fiber guide apparatuses 20 may include at least one alignment member to align an optical fiber guide with a splice connector installation tool. The optical fiber guide is configured to guide an optical fiber to a fiber entry of a fiber optic connector installed in the splice connection installation tool. In this manner, when the alignment 25 member is alignably interfaced with the splice connector installation tool, the optical fiber guide apparatus is also aligned with the splice connector installation tool to accurately guide the optical fiber to the fiber optic connector installed in the splice connector installation tool.

In this regard in one embodiment, an optical fiber guide apparatus is disclosed. The optical fiber apparatus is configured to guide a field optical fiber (hereinafter "optical fiber") into a fiber optic connector installed (i.e., held) within a splice connector installation tool. The optical fiber guide apparatus 35 includes a fiber guide body having a fiber guide disposed in the fiber guide body. The fiber guide comprises a recess defining an entry opening and an exit opening opposite the entry opening along a longitudinal axis of the fiber guide. The recess may be configured to receive and guide an optical fiber 40 from the entry opening along the longitudinal axis of the fiber guide through the exit opening into a housing opening of the splice connector installation tool. The optical fiber guide apparatus may also include an alignment member disposed in the fiber guide body. The alignment member is configured to 45 be alignably interfaced with a movable clamp in the splice connector installation tool. The movable clamp may be configured to clamp an end portion of a fiber optic connector within the housing opening of the splice connector installation tool to align the end portion with the exit opening of the 50 fiber guide. In this manner, as a non-limiting example, the optical fiber may be alignably inserted within the fiber optic connector without damage or with reduced risk of damage to the optical fiber.

In another embodiment, an optical fiber termination sys- 55 tem is disclosed. The optical fiber termination system includes a splice connector installation tool having a housing forming an internal cavity. The splice connector installation tool may also include a mechanical device at least partially may be configured to perform a splice termination of an optical fiber with a stub optical fiber of a fiber optic connector. The optical fiber termination system also includes an optical fiber guide apparatus having a fiber guide body with a fiber guide disposed in the fiber guide body. The fiber guide may 65 comprise a recess defining an entry opening and an exit opening opposite the entry opening along a longitudinal axis of the

fiber guide. The recess may be configured to receive and guide an optical fiber from the entry opening along the longitudinal axis of the fiber guide through the exit opening into a housing opening of a splice connector installation tool. The optical fiber guide apparatus may also include an alignment member that may alignably interface with a movable clamp that may be attached to the splice connector installation tool. The movable clamp may clamp an end portion of a fiber optic connector within the housing opening to align the end portion with the exit opening of the fiber guide. In this manner, as a non-limiting example, the optical fiber may be inserted into the fiber optic connector with minimal damage.

In another embodiment, a method for splicing an optical fiber to a stub optical fiber in a fiber optic connector is dis-15 closed. The method includes providing a splice connector installation tool including a housing forming an internal cavity and a mechanical device at least partially disposed within the internal cavity. The method may also include providing an optical fiber guide apparatus comprising a fiber guide body. The fiber guide apparatus may also include a fiber guide disposed in the fiber guide body. The fiber guide may include a recess defining an entry opening and an exit opening opposite the entry opening along a longitudinal axis of the fiber guide. The optical fiber guide apparatus may also include an alignment member. The method may then include aligning the exit opening of the fiber guide in a direction relative to the splice connector installation tool with the alignment member by alignably interfacing the alignment member with a moveable clamp attached to the splice connector installation tool as the movable clamp clamps an end portion of a fiber optic connector. The method may then include receiving an optical fiber into the entry opening and guiding the optical fiber along the longitudinal axis of the fiber guide through the exit opening into a housing opening of the splice connector installation tool. The method may then include terminating the optical fiber to the stub optical fiber of the fiber optic connector using the mechanical device. In this manner, as a non-limiting example, the optical fiber may be inserted into the fiber optic connector quickly and with minimal operator skill required.

Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description that follows, the claims, as well as the appended drawings.

It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A is a side cutaway view of an exemplary optical disposed within the internal cavity. The mechanical device 60 fiber prior to termination with a stub optical fiber of an exemplary prior art mechanical splice fiber optic connector;

FIG. 1B is a side cutaway view of the optical fiber terminated with the stub optical fiber of the prior art mechanical splice fiber optic connector of FIG. 1A;

FIG. 2A is a top view of an exemplary fiber optic connector installed in an exemplary splice connector installation tool adjacent to an exemplary optical fiber guide apparatus;

FIG. 2B is a side view of the splice connector installation tool of FIG. 2A with the fiber optic connector removed along with a detail view:

FIGS. **3**A and **3**B are top perspective and front views, respectively, of an exemplary movable clamp attached to an ⁵ exemplary lid;

FIG. 3C is a perspective view of the movable clamp of FIGS. 3A and 3B clamping an end portion of the fiber optic connector installed in the splice connector installation tool of FIG. 2A, the movable clamp being alignably interfaced with an adjustment member of the optical fiber guide apparatus of FIG. 2A;

FIG. **4**A is a perspective front top view of the fiber optic connector and optical fiber guide apparatus installed in the splice connector installation tool of FIG. **2**A with the optical 15 fiber aligned with a fiber entry of the fiber optic connector;

FIG. 4B is a front view of the fiber optic connector and optical fiber guide apparatus installed in the splice connector installation tool of FIG. 2A;

FIGS. **5**A through **5**E are perspective, top, front, rear side, ²⁰ and left side views, respectively, of the optical fiber guide apparatus of FIG. **2**A;

FIG. **6** is a side schematic conceptual view of an exemplary methodology for measuring the reflectivity of a plating material that may be used for the fiber guide of the optical fiber 25 guide apparatus of FIG. **2**A;

FIG. 7 is a perspective view of exemplary cantilevered pins attached to a structural member of the splice connector installation tool of FIG. 2A;

FIG. **8** illustrates an exemplary process for splicing an ³⁰ optical fiber to a stub optical fiber of a fiber optic connector using the splice connector installation tool and optical fiber guide apparatus of FIG. **2**A;

FIG. **9** is a side view of the optical fiber guide apparatus of FIG. **2A** installed on the splice connector installation tool of ³⁵ FIG. **2A** along with a detail view;

FIG. 10 is a side view of the optical fiber guide apparatus of FIG. 9 pivoted to abut against at least one reference surface of the splice connector installation tool of FIG. 2A along with a detail view.

FIG. 11 is a side view of the optical fiber guide apparatus and splice connector installation tool of FIG. 10 with the fiber optic connector installed in the splice connector installation tool along with a detail view; and

FIGS. **12**A and **12**B are a side view and a partial front 45 cutaway view, respectively, of the optical fiber guide apparatus and splice connector installation tool of FIG. **11** with the movable clamp clamping on the end portion and alignably interfacing with the adjustment feature of the optical fiber guide apparatus.

DETAILED DESCRIPTION

Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, 60 like reference numbers will be used to refer to like components or parts.

Embodiments disclosed herein include optical fiber guide apparatuses for splice connector installation tools, and related assemblies and methods. The optical fiber guide apparatuses 65 may include at least one alignment member to align an optical fiber guide with a splice connector installation tool. The opti-

6

cal fiber guide is configured to guide an optical fiber to a fiber entry of a fiber optic connector installed in the splice connection installation tool. In this manner, when the alignment member is alignably interfaced with the splice connector installation tool, the optical fiber guide apparatus is also aligned with the splice connector installation tool to accurately guide the optical fiber to the fiber optic connector installed in the splice connector installation tool.

In this regard, FIG. 2A is a top view of an exemplary optical fiber guide apparatus 42 configured to align an optical fiber 48 with a splice connector installation tool 44. The optical fiber guide apparatus 42 is shown as being adjacent to the splice connector installation tool 44. A fiber optic connector 46 is installed in the splice connector installation tool 44 to be terminated to the optical fiber 48 inserted through the optical fiber guide apparatus 42. In this explanatory embodiment, the splice connector installation tool 44 is useful for the Uni-Cam® field-installable connector commercially available from Corning Cable Systems, LLC of Hickory, N.C. As will be discussed in more detail below, the optical fiber guide apparatus 42 is configured to interface with the splice connector installation tool 44 to align a fiber guide with the fiber optic connector 46 to facilitate alignably inserting an optical fiber 48 into the fiber optic connector 46 for a splice connec-

With continuing reference to FIG. 2A, in one non-limiting embodiment the fiber optic connector 46 disposed in the splice connector installation tool 44 may include a crimp tube 50 at an end portion 52 of the fiber optic connector 46. The crimp tube 50 may include a fiber entry 54 serving as a passageway for an end 56 of the optical fiber 48 to be inserted within the fiber optic connector 46 in order to be terminated to the fiber optic connector 46. In other embodiments, the end portion 52 of the fiber optic connector 46 may include the fiber entry 54 serving as a passageway, but may not include the crimp tube 50. The insertion of the optical fiber 48 may occur in a housing opening 58 of the splice connector installation tool 44 where the end portion 52 of the fiber optic connector 46 may be located, when the fiber optic connector 46 is installed in the splice connector installation tool 44. The fiber optic connector 46 may be removed from the splice connector installation tool 44 once a termination with the optical fiber 48 is completed. The fiber optic connector 46 can thereafter be connected as desired to optically couple the optical fiber 48 terminated by fiber optic connector 46 to another optical fiber or other optical device.

The optical fiber guide apparatus 42 may include various features observable in FIG. 2A including a fiber guide body **59**, a fiber guide **60**, and an alignment member **62**. The fiber guide 60 is disposed in the fiber guide body 59. The fiber guide 60 of the optical fiber guide apparatus 42 is configured to guide the optical fiber 48 into the fiber optic connector 46 when the optical fiber guide apparatus 42 is interfaced with the splice connector installation tool 44. As will be discussed in more detail below, the alignment member 62 is in a known fixed relationship with the fiber guide 60 of the optical fiber guide apparatus 42. The splice connector installation tool 44 also includes a movable clamp, introduced below, that is configured to control the alignment of the end portion 52 of the fiber optic connector 46. Thus, because the alignment member 62 in the optical fiber guide apparatus 42 alignably interfaces with the movable clamp of the splice connector installation tool 44, the alignment member 62 aligns the fiber guide 60 with the end portion 52 of the fiber optic connector 46. This allows for aligned insertion of the optical fiber 48 in the fiber entry 54 of the end portion 52 of the fiber optic connector 46 for a splice connection.

Before discussing the alignment member 62 and the alignment features of the optical fiber guide apparatus 42 in more detail, the optical fiber guide apparatus 42 and its fiber guide 60 will be discussed. The fiber guide 60 in FIG. 2A is disposed in the fiber guide body 59. The fiber guide body 59 may be 5 configured to connect the fiber guide 60 to other features in the optical fiber guide apparatus 42, for example, the alignment member 62. With continuing reference to FIG. 2A, the fiber guide 60 in this embodiment may include a recess 64 defining an exit opening 66 having a first cross-sectional area 10 CS₁ and disposed on a first end 68 of the fiber guide 60. The fiber guide 60 may also include an entry opening 70 having a second cross-sectional area CS2 larger than the first crosssectional area CS_1 . The entry opening 70 may be disposed on a second end 72 of the fiber guide 60 opposite the exit opening ${\bf 66}$ along a longitudinal axis ${\bf A}_{FG}$ of the fiber guide ${\bf 60}$. This may enable a distance to be created between the entry opening 70 and the exit opening 66 to make possible a gradual change in cross-sectional area of the recess 64.

With continuing reference to FIG. 2A, the recess 64 of the 20 fiber guide 60 may be configured to receive and guide the optical fiber 48 from the entry opening 70 along the longitudinal axis A_{FG} and through the exit opening **66** into the housing opening 58. The recess 64 provides a passageway for the optical fiber 48 to travel through the optical fiber guide appa- 25 ratus 42. The recess 64 may include one or more recess surfaces 74 arranged at a desired angle from the longitudinal axis A_{FG} . For instance, the desired angle between recessed surface 74 longitudinal axis A_{FG} may be disposed at an angle of less than twenty (20) degrees from the longitudinal axis 30 A_{FG} in one example, but other angles are possible. The recess surfaces 74 may be disposed, for example, within fifteen (15) degrees of the longitudinal axis A_{FG} to reduce debris by reducing the potential for the optical fiber 48 to be lodged in the recess surfaces 74 when the optical fiber 48 may contact 35 the recess surfaces 74 as the optical fiber 48 travels through the recess 64. The recess surfaces 74 may include a bottom recess surface portion 76 disposed up to four (4) degrees of the longitudinal axis A_{FG} or preferably up to two (2) degrees, as non-limiting examples. Of course, other angles for the 40 bottom recess surface portion 76 are possible. The recess surfaces 74 may guide the optical fiber 48 along the recess 64.

The optical fiber guide apparatus 42 may further include the alignment member 62 to align the exit opening 66 of the optical fiber guide apparatus 42 with the end portion 52 of the 45 fiber optic connector 46. The alignment member 62 enables the exit opening 66 of the fiber guide 60 and the end portion 52 of the fiber optic connector 46 to be aligned with each other in a second axis A_2 . The second axis A_2 may be orthogonal to a longitudinal axis A_1 of the splice connector installation tool 44. As will be discussed in more detail below, the alignment member 62 aligns the fiber guide 60 with the end portion 52 of the fiber optic connector 46 using a movable clamp. The alignment member 62 may include two surfaces 78(1), 78(2). Each of the two surfaces 78(1), 78(2) adapted to move the 55 alignment member 62 in opposite directions along the second axis A_2 .

The two surfaces **78(1)**, **78(2)** may be on opposite sides of the alignment member **62**. This orientation on opposite sides of the alignment member **62** may improve the access of the 60 movable clamp **80** to the two surfaces **78(1)**, **78(2)** during alignment. The two surfaces **78(1)**, **78(2)** also may be angled with respect to each other to taper the alignment member **62**. The tapering may improve the ability of the movable clamp **80** to make contact with the alignment member **62** during 65 alignment. The alignment member **62** may alignably interface with a movable clamp **80** of the splice connector instal-

8

lation tool 44. The two surfaces 78(1), 78(2) of the alignment member 62 may abut against movable surfaces 82(1), 82(2) of the movable clamp 80 when the alignment member 62 alignably interfaces with the movable clamp 80. Abutment and/or centering of the two surfaces 78(1), 78(2) against the movable surfaces 82(1), 82(2) indicates the alignment member 62 has completed alignment relative to the second axis A_2 . The two surfaces 78(1), 78(2) may abut to the movable clamp 80 concurrently or not depending on the design.

As illustrated in FIG. 2B, the optical fiber guide apparatus 42 may also include a second alignment member 84. The second alignment member 84 may be employed to limit a position of the exit opening 66 of the fiber guide 60 along the longitudinal axis A₁ of the splice connector installation tool 44. In this regard, the position of the exit opening 66 may be limited to a fixed distance from an axis of rotation AR₁ of a rotatable attachment 88 (FIG. 4A). Thereby the exit opening 66 may be restricted from preventing the movement of the movable clamp 80. Further, a distance between the exit opening 66 and the end portion 52 of the fiber optic connector 46 may be minimized to better guide the optical fiber 48 into the fiber entry 54 of the end portion 52. The second alignment member 84 may comprise a clip feature 86 which may form the rotatable attachment 88 with the splice connector installation tool 44. The rotatable attachment 88 may be a slidable pivot attachment 90 or have any other suitable configuration. The clip feature 86 may include a concave surface 92 (FIG. 2B) configured to form the slidable pivot attachment 90. The clip feature 86 provides a convenient and tool-less attachment to the splice connector installation tool 44.

With continuing reference to FIGS. 2A and 2B, the optical fiber guide apparatus 42 may further include a third alignment member 94 configured to position the exit opening 66 of the fiber guide 60 along a third axis A₃ (FIG. 2B). Thereby the exit opening 66 may be more accurately guided to fiber entry 54 of the end portion 52 of the fiber optic connector 46 with respect to the third axis A₃. The third axis A₃ may be orthogonal to the longitudinal axis A₁ of the splice connector installation tool 44 and orthogonal to the second axis A2. The third alignment member 94 may include brackets 96(1), 96(2). The brackets 96(1), 96(2) may include alignment surfaces 98(1), 98(2) to align the exit opening 66 of the fiber guide 60 along the third axis A₃ by abutting against reference surfaces 100 (1), 100(2) attached to the splice connector installation tool 44. In one embodiment shown in FIG. 2A, the reference surfaces 100(1), 100(2) may also be attached to a structural member 101 attached within the splice connector installation tool 44. The structural member 101 may provide a more accurate reference point than a movable component of the splice connector installation tool 44. The alignment surfaces 98(1), 98(2) are preferably symmetrical about the longitudinal axis A_{FG} of the fiber guide 60, but symmetry is not required. This arrangement allows the optical fiber guide apparatus 42 to be supported on opposite sides of the longitudinal axis A_{FG} to improve accuracy. In summary, the plurality of alignment members 62, 84, 94 provides enhanced alignment of the exit opening 66 in multiple axes A_1 ; A_2 and A₃ with respect to the splice connector installation tool 44 and the end portion 52 of the fiber optic connector 46.

As discussed above, the optical fiber guide apparatus 42 may be attached to the splice connector installation tool 44. Some non-limiting features of the splice connector installation tool 44 which appear in FIG. 2A may include the housing 102, termination status indicators such as unacceptable termination signal 104 or acceptable termination signal 106, cam actuator 108, and a visual fault locator system 110. The

housing 102 may form an internal cavity 112 within which a mechanical device 114 and the visual fault locator system 110 may be disposed.

The mechanical device 114 may be utilized to perform a splice termination of the end 56 of the optical fiber 48 with a 5 stub optical fiber 116 of a fiber optic connector 46. The optical fiber 48 may include a buffer 118 for protection and/or stress isolation or not depending on the cable and/or connector design. When the splice termination of the optical fiber 48 and the stub optical fiber 116 is completed, then the optical fiber 10 48 and the stub optical fiber 116 are optically coupled by way of a mechanical splice. The cam actuator 108 twists a portion of the fiber optic connector 46 called a cam member 109 of the fiber optic connector 46 to perform the splice termination. FIG. 2A depicts the splice connector installation tool 44 with 15 the fiber optic connector 46 installed in solid lines and the stub optical fiber 116 (internal) of the fiber optic connector 46 in phantom lines.

Determining whether a termination of an optical fiber 48 has been properly performed is important. In this embodi- 20 ment, the visual fault locator system 110 discussed above may be located in the internal cavity 112. The visual fault locator system 110 determines whether the splice termination is properly performed. The visual fault locator system 110 may comprise one or more optical lenses and light sensors to 25 determine if the quality and intensity of light conveyed between the optical fiber 48 and the stub optical fiber 116 meet performance specifications. The unacceptable termination signal 104 or the acceptable termination signal 106 (i.e., termination status indicators) may be illuminated by the 30 visual fault locator system 110 to communicate whether the splice termination is properly performed. The unacceptable termination signal 104 and the acceptable termination signal 106 may be located in a first recess 120 and second recess 122 respectively within the housing 102. These locations are easily monitored by an operator due to their prominent placements on the housing 102.

With continuing reference to FIGS. 2A and 2B, the housing 102 of the splice connector installation tool 44 may also to enable the optical fiber 48 to be inserted into the fiber entry 54. The fiber entry 54 may have a width D₁ (FIG. 4A). In one embodiment, the width D_1 may be two (2) millimeters, as a non-limiting example, but other suitable width sizes are possible. The splice connector installation tool 44 may include a 45 splice activation handle 125 to be engaged to initiate optical coupling between the optical fiber 48 and the stub optical fiber 116 such as by rotating cam actuator 108. As shown in FIG. 2B, the splice connector installation tool 44 may include an actuator control knob 126 to deform the crimp tube of the 50 fiber optic connector 46 after an acceptable termination signal 106 is received if desired. Access and operation of the actuator control knob 126 may continue when the optical fiber guide apparatus 42 is attached to the splice connector installation tool 44. In other words, the optical fiber guide apparatus 55 42 does not impede operation of installation tool 44.

FIG. 2B shows an embodiment of the splice connector installation tool 44 including the movable clamp 80. In this embodiment, the movable clamp 80 is attached to a lid 128, but other arrangements are possible. The lid 128 may be able 60 to rotate relative to the housing 102 through a pivot 130 attachable to the housing 102. As discussed above, the movable clamp 80 is configured to alignably interface with the alignment member 62 and to clamp the end portion 52 of the fiber optic connector 46 to align the exit opening 66 of the 65 fiber guide 60 with the end portion 52 in the second axis A_2 . The movable clamp 80 has a V-shaped structure including the

10

movable surfaces 82(1), 82(2) allowing precise alignment of the exit opening 66 of the fiber guide 60 relative to the end portion 52 in the second axis A_2 , as will be discussed in more detail below. The pivot 130 enables the lid 128 to be opened to allow access to the internal cavity 112 of the splice connector installation tool 44 to attach or detach the fiber optic connector 46. The lid 128 may also be moved to a closed, or nearly closed position, to interface with the alignment member 62. The lid 128 may also be closed when the splice connector installation tool 44 is not in use to protect the mechanical device 114.

FIGS. 3A and 3B show details of the lid 128 and movable clamp 80 when the pivot 130 is detached from the housing 102 of the splice connector installation tool 44. The lid 128 extends a distance D₂ from the pivot 130 to the movable clamp 80. The pivot 130 may be an axle 132 as shown in FIG. 3B that may be inserted through holes (not shown) in the housing 102. In one embodiment, the axle 132 may be removable, and may extend between two retainer surfaces 134(1), 134(2). The two retainer surfaces 134(1), 134(2) may face each other and may abut against the housing 102 to prevent the lid 128 from translating along a fourth axis A₄ of the pivot 130. The fourth axis A_4 may be parallel to the second axis A_2 , as shown in this embodiment.

The movable clamp 80 may be attached orthogonally or substantially orthogonally to the lid 128. The movable surfaces 82(1), 82(2) of the movable clamp 80 may be angled with respect to each other and may extend from a lid apex surface 136. The angle between the movable surfaces 82(1), **82(2)** converts a portion of a force F_0 of the lid **128** in the third axis A_3 to forces F_1 , F_2 in the second axis A_2 as described in more detail below. A portion of each of the movable surfaces **82(1)**, **82(2)** may be up to an angle θ_1 , which may, in nonlimiting embodiments, be in a range from zero (0) to fortyfive (45) degrees, and in the embodiment shown the angle is about twenty-two (22) degrees. The lid 128, the axle 132, and the movable clamp 80 may be made of one or more strong resilient materials, for example, plastic or metal.

FIG. 3C depicts a partial view of the movable surfaces include a housing recess 124 forming the housing opening 58 40 82(1), 82(2) of the movable clamp 80 clamping down on the end portion 52 of the fiber optic connector 46 as the lid 128 is rotated in the third axis A₃ to a closed or near closed position. FIG. 3C is a partial view because the structural member 101 and the reference surfaces 100(1), 100(2) have been removed for clarity. The fiber optic connector 46 may move in a horizontal direction (X and/or Y direction) relative to the splice connector installation tool 44 when installed within the splice connector installation tool 44. As the lid 128 is rotated, at least one of the movable surfaces 82(1), 82(2) of the movable clamp 80 may come into contact with the end portion 52 of the fiber optic connector 46 to create the one or more forces $F_1(1)$, $F_1(2)$, respectively, from the force F_0 of the lid 128 in the third axis A₃ upon the end portion **52** as shown in FIG. **3**C. The forces $F_1(1)$, $F_1(2)$ may move the fiber optic connector 46 in the horizontal direction (X and/or Y direction) as the lid 128 is rotated until the end portion 52 is clamped by the lid apex surface 136 as shown in FIG. 3C. The end portion 52 is aligned to the movable clamp 80 when the end portion 52 is clamped by the lid apex surface 136 and thereby is aligned with the second axis A_2 .

While the movable clamp 80 is clamping down on the end portion 52 of the fiber optic connector 46, the movable clamp 80 is alignably interfacing with the alignment member 62 of the optical fiber guide apparatus 42. Alignably interfacing occurs as the lid 128 is rotated and at least one of the movable surfaces 82(1), 82(2) abut against the two surfaces 78(1), 78(2) of the alignment member 62 to create one or more

forces $F_2(1)$, $F_2(2)$, respectively, from the force F_0 of the lid 128 in the third axis A₃ upon the alignment member 62 as shown in FIG. 3C. The forces $F_2(1)$, $F_2(2)$ may move the alignment member 62 in a horizontal direction (X and/or Y direction) as the lid 128 is rotated until the end portion 52 of the fiber optic connector 46 is clamped by the lid apex surface 136 as shown in FIG. 3C or when at least two of the movable surfaces 82(1), 82(2) abut against the two surfaces 78(1), 78(2) of the alignment member 62. As a result of the alignably interfacing, the exit opening 66 of the fiber guide 60 is aligned along the second axis A2 with the fiber entry 54 of the end portion 52 because the exit opening 66 is a fixed spatial relationship relative to the alignment member 62.

In other words, the optical fiber guide apparatus 42 includes two surfaces 78(1), 78(2) which are configured to 15 interface with the movable clamp 80 that also directly interfaces with the end portion 52 of the fiber optic connector 46. As the movable clamp 80 couples directly to the end portion 52 and the fiber guide apparatus, direct coupling alignment between the two is provided and can overcome a variance in 20 the location of the end portion 52 of the fiber optic connector **46** within the splice connector installation tool **44**.

In some embodiments, the end portion 52 of the fiber optic connector 46 may not abut against the alignment member 62. Not having the end portion 52 abut against the alignment 25 member 62 may enable the fiber optic connector 46 to be more easily installed in the splice connector installation tool 44. Further, in embodiments of the fiber optic connector 46 where the end portion 52 includes the crimp tube 50, the crimp tube 50 is more accessible to be crimped to the buffer 30 118 of the optical fiber 48 in order to more strongly mechanically attach the optical fiber 48 to the fiber optic connector 46.

FIG. 4A shows a perspective view of the optical fiber guide apparatus 42 attached to the splice connector installation tool 44 with a rotatable attachment 88 and the end portion 52 of the 35 fiber optic connector 46 aligned with the exit opening 66. The rotatable attachment 88 occurs between the concave surface 92 (FIG. 2B) of the clip feature 86 and a pin 138 of the splice connector installation tool 44. The pin 138 serves as a static attachment location on the splice connector installation tool 40 44 for the optical fiber guide apparatus 42. The pin 138 may be attached to the housing 102 of the splice connector installation tool 44 by, for example, an interference fit with a recess 140 of the housing 102. The pin 138 may be made of a strong resilient material, for example, metal or plastic. In one non- 45 limiting embodiment, the pin 138 may have a suitable diameter for securing the optical fiber guide apparatus 42, for example, of one-eighth of an inch.

The pin 138 may be a cylindrical shape to enable the concave surface 92 of the clip feature 86 to clip onto the pin 50 138 and form the rotatable attachment 88. The rotatable attachment 88 may include the axis of rotation AR₁ about a center axis of the pin 138. In one embodiment, the clip feature **86** may be toollessly clipped onto and removed from the pin 138. The clip feature 86 of the optical fiber guide apparatus 42 55 fiber guide 60 may be integral to the alignment member 62, may be made of a strong flexible material, for example, plastic, to enable attachment to the pin 138.

Moreover, the concave surface 92 may translate along the pin 138 parallel to the axis of rotation AR₁ to form the slidable pivot attachment 90. The translation enables the optical fiber 60 guide apparatus 42 to move parallel to the second axis A2 when the forces $F_2(1)$, $F_2(2)$ are applied as shown in FIG. 3C.

FIG. 4B depicts the third alignment member 94 aligning the exit opening 66 of the fiber guide 60 along a third axis A_3 . The third axis A₃ may be orthogonal to the longitudinal axis 65 A₁ of the splice connector installation tool 44 and orthogonal to the second axis A2. The third alignment member 94

includes the alignment surfaces 98(1), 98(2) aligning the exit opening 66 of the fiber guide 60 along the third axis A₃ by abutting against the reference surfaces 100(1), 100(2)attached as part of the splice connector installation tool 44. The alignment surfaces 98(1), 98(2) may be included as part of the brackets 96(1), 96(2) which may extend from the fiber guide 60. The reference surfaces 100(1), 100(2) may be disposed on cantilevered pins 142(1), 142(2) of the splice connector installation tool 44 which is disposed within the housing opening 58. In one non-limiting embodiment, the cantilevered pins 142(1), 142(2) may have a suitable diameter, for example, of one-sixteenth of an inch. The cantilevered pins 142(1), 142(2) may be attached to a structural member 101 of the splice connector installation tool 44. The cantilevered pins 142(1), 142(2) and the structural member 101 may be made of a strong resilient material, for example, plastic or steel.

12

It is noted that the second alignment member 84 and third alignment member 94 may together provide further alignment in additional axes, the first axis A_1 and third axis A_3 , to maintain alignment between the optical fiber guide apparatus 42 and the end portion 52 of the fiber optic connector 46, to avoid misalignment from components of the force F₀ upon the optical fiber guide apparatus 42 in these axis, and to provide more robust alignment to account for manufacturing variances in component dimensions.

FIG. 5A through 5E represent different views highlighting various features of the optical fiber guide apparatus 42. FIG. 5A shows a perspective view of the optical fiber guide apparatus 42 depicting the alignment member 62 including the two surfaces 78(1), 78(2). The two surfaces 78(1), 78(2) may be opposite to each other and may be tapered so that they become increasing closer to each other along a Z₁ axis perpendicular to the longitudinal axis \mathbf{A}_{FG} of the fiber guide. For clarity, the longitudinal axis A_{FG} in FIGS. 5A through 5E is depicted as parallel to an X_1 axis.

FIG. 5A depicts the second alignment member 84. The second alignment member 84 includes the clip feature 86 configured to form the rotatable attachment 88 (FIG. 4A) with the splice connector installation tool 44. The clip feature 86 may include the concave surface 92. The concave surface 92 may deform during attachment with the splice connector installation tool 44 to allow the clip feature 86 to fit around the

FIG. 5A also shows the third alignment member 94. The third alignment member 94 may include the alignment surfaces 98(1), 98(2) which may be symmetric about the longitudinal axis A_{FG} of the fiber guide 60. The alignment surfaces 98(1), 98(2) may be disposed on brackets 96(1), 96(2) which extend away from the fiber guide 60. The brackets 96(1), 96(2) enable the alignment surfaces 98(1), 98(2) to contact the reference surfaces 100(1), 100(2) without becoming an obstacle to the end portion 52 of the fiber optic connector 46.

With continuing reference to FIGS. 5A through 5E, the second alignment member 84, and third alignment member 94. This may reduce manufacturing expense by reducing the number of components and may reduce installation time by eliminating assembly tasks.

The fiber guide 60 may include the recess 64 which may guide the optical fiber 48 to the fiber entry 54 of the fiber optic connector 46 when the fiber optic connector 46 is mounted within the splice connector installation tool 44. The recess 64 may also define the exit opening 66 having the first crosssectional area CS₁ and may be disposed on the first end 68 of the fiber guide 60. A width D₄ (FIG. 5D) of the exit opening 66 in one embodiment may have any suitable size, by way of

example, D_4 may be about one (1) millimeter. The width D_4 of the exit opening **66** may be smaller than the width D_1 (FIG. **4A**) of the fiber entry **54** of the fiber optic connector **46** to provide sufficient precision for the optical fiber **48** to enter the fiber entry **54**. The first cross-sectional area CS_1 may have a 5 curvilinear cross-sectional shape **160(1)** (FIG. **5D)** to avoid sharp corners that may catch the optical fiber **48** as the optical fiber **48** departs from the fiber guide **60**. Also, the curvilinear cross-sectional shape **160(1)** may facilitate the easier creation of smooth edges, otherwise sharp edges may damage the 10 optical fiber **48** or be a ready source of debris to contaminate the optical fiber **48**. The curvilinear cross-sectional shape **160(1)** may also enable the recess **64** to be more easily cleaned to remove debris.

13

The fiber guide **60** may also include the entry opening **70** 15 (FIG. **5**C) which may permit the optical fiber **48** to enter the recess **64**. The entry opening **70** may be disposed on the second end **72** of the fiber guide **60**. The entry opening **70** may have the second cross-sectional area CS_2 having a width of D_5 (FIG. **5**C) and a curvilinear cross-sectional shape **160(2)** (FIG. **5**C). The second cross-sectional area CS_2 may be larger than the first cross-sectional area CS_1 as the width CS_2 may be larger than the width CS_3 may be

The recess **64** may extend a distance D_6 (FIG. **5**E) along the longitudinal axis A_{FG} . Embodiments of the recess **64** may include the distance D_6 no less than approximately five (5) millimeters long and no more than approximately twenty-five (25) millimeters long, as a non-limiting example. The distance D_6 (FIG. **5B**) cannot be too short otherwise the width D_4 (FIG. **5D**) of the exit opening **66** may be restricted by the width D_1 (FIG. **4A**) of the fiber entry **54**, a maximum theta (θ_2) angle (FIG. **5B**) to allow tolerable damage to the optical fiber **48** and tolerable debris generation, and the width D_5 (FIG. **5C**) of the entry opening **70** to allow the optical fiber **48** to be easily inserted into the recess **64** of the fiber guide **60**. The distance D_6 cannot be too long otherwise the optical fiber **48** may be more difficult to control at the first end **68** of the fiber guide **60** when the first end **68** becomes distant from the second end **72**.

The recess 64 may include the one or more recess surfaces 74 which may be plated with a metallic plating material 162 to prevent the optical fiber 48 from stopping along the recess 64. The metallic plating material 162 allows an inexpensive material, for example, thermoplastic, to be used to manufacture a sub-surface of the fiber guide 60 to save manufacturing expense. In some embodiments, the optical fiber guide apparatus 42 may be wholly made of metal, for example, a nickel alloy or other suitable material.

As stated, the optical fiber guide apparatus 42 may optionally be fully or at least partially plated with the metallic plating material 162. The metallic plating material 162 may be a matte-finish material 164 comprising nickel. As schematically illustrated in FIG. 6, the matte-finish material 164 may reflect no more than five (5) percent of a visual-light beam 166 radiating from a light source 168 reflected sixty

14

(60) degrees from perpendicular to the matte-finish material 164 as measured by a light-intensity measurement device 170. The visual-light beam 166 may comprise electromagnetic radiation having a wavelength of more than 380 nanometers and less than 740 nanometers. An operator may be better able to insert the optical fiber 48 through the recess 64 and into the fiber entry 54 when the optical fiber 48 is easily seen. The optical fiber 48 is more easily seen against the mattefinish material 164 because the reduced glare from fewer reflections from the matte-finish material 164 provides a high contrast.

The matte-finish material 164 may also be a damage-resistant material 172 forming a surface configured to reduce or not cause debris when in abutment with the optical fiber 48. The debris may be caused when the optical fiber 48 scratches the matte-finish material 164. Debris may be generated when the optical fiber 48 contacts the matte-finish material 164 of the recess 64. The debris generation may be controlled by a number of factors including a hardness of the optical fiber 48 relative to the matte-finish material 164, and/or the geometry of the recess 64. The metallic plating material 162 may not have too low of a hardness compared to the optical fiber 48 or the metallic plating material 162 will easily deform upon contact with the optical fiber 48 and cause debris. The optical fiber 48 may have a Mohs scale of about seven (7) and the metallic plating material 162 may have a Mohs scale of about four (4). The relative hardness of the metallic plating material 162 discourages the generation of debris upon contact with the optical fiber 48.

The rate of debris generation may be low at an angle of attack of zero (0) degrees when the optical fiber is parallel to the metallic plating material 162 of the recess 64. However, as the optical fiber 48 approaches a position perpendicular to the metallic plating material 162, when the angle of attack becomes ninety (90) degrees, the rate of debris generation increases. Tables 1A and 1B shown below depict empirical data showing observations of debris generation and the optical fiber 48. In Tables 1A and 1B, seven (7) different optical fibers 48 were used for seven different angles of attack from ten (10) degrees to seventy (70) degrees to contact or "strike" the metallic plating material 162. Each of the seven different optical fibers 48 experienced five (5) cycles of strikes to the metallic plating material 162 at a given angle of attack. Observations were recorded during each cycle in Table 1A (Examples of Conditions of Optical Fiber and Level of Debris For Angles of Attack From Ten (10) to Forty (40) Degrees) or Table 1B (Examples of Conditions of Optical Fiber and Level of Debris For Angles of Attack From Fifty (50) to Seventy (70) Degrees) regarding the damage to the optical fiber 48 and the recess 64, and the debris generated each cycle. Also, at the beginning of each cycle the optical fiber 48 was cleaved and both recess 64 and the optical fiber 48 cleaned. The empirical data shows that angles of attack less than twenty (20) degrees have minimum debris generation and minimum damage to the optical fiber 48.

TABLE 1A

		ditions of Optical Fiber attack From Ten (10) to I		
		Condition of Optical Fib For Each Ang		Debris
Optical Fiber Strikes	10 Degrees	20 Degrees	30 Degrees	40 Degrees
First	No change	Debris about ½ radius inward and about ½ radius width	Small deposit 1/3 of radius	Debris scattered across one side

TABLE 1A-continued

Examples of Conditions of Optica	al Fiber and Level of Debris
For Angles of Attack From Ten	(10) to Forty (40) Degrees

Condition of Optical Fiber and Level of Debris For Each Angle of Attack Optical Fiber Strikes 10 20 30 40 Degrees Degrees Degrees Degrees Small deposit of Debris with small Small deposit Second Large deposit debris added from width but extends about 2/3 radius 1/2 of radius edge to 1/4 radius 5/6 of the way to inward core Small debris 1/2 Third Small deposit of Small deposit Large amount of debris added from radius inward 1/2 of radius debris scattered edge to 1/4 radius across surface Large deposit Fourth Small deposit of Small deposit Large deposit debris added from with string of 1/2 radius 1/3 of radius edge to 1/3 radius powder across fiber inward Fifth Small deposit of Small debris 1/2 2 large deposits Large deposit debris added from radius inward with debris almost to core edge to ½ radius and scattered scattered across across radial radial surface Has scratches from Vertical scratches Observations of No scratches Scratches across fiber guide rear top diagonal from mold line to top of front end before first toward front top optical fiber bottom strike Observations of No discernable No discernable No discernable 2.5 scratches fiber guide after change change change cross the fifth optical midsection, most fiber strike likely from same fiber

TABLE 1B

Examples of Conditions of Optical Fiber and Level of Debris For Angles of Attack From Fifty (50) to Seventy (70) Degrees

Condition of Optical Fiber and Level of Debris

	for Each Angle of Attack		
Optical Fiber Strikes	50 Degrees	60 Degrees	70 Degrees
First	Debris scattered all the way to core and across radially	Debris deposit to center of fiber and small deposit across	½ of fiber destroyed
Second	Small deposit ½ radius inward	Destroyed across entire fiber with large deposit on one end	1/3 destroyed
Third	Piece of fiber missing, debris scattered to core	1/3 of fiber destroyed	Large area of debris with small deposit across
Fourth	Small deposit ² / ₃ radius inward with tiny deposit adjacent	A little more destroyed than third cleave	Debris all around surface of fiber
Fifth	Large deposit inward to core	Nearly ½ of fiber destroyed	½ of fiber destroyed inwardly with radial surface damage
Observations of fiber guide before first optical fiber strike	Large diagonal scratch at top	Divot at rear mid; scratches extend from front diagonally	Vertical scratches at front
Observations of fiber guide after fifth optical fiber strike	No discernable change	Multiple scratches across in two different places	Multiple scratches were fibers stuck to device

Using the information from Tables 1A and 1B, it can be observed that a smaller angle of attack reduces debris and optical fiber damage. In this regard, as a non-limiting example, the recess 64 may include the one or more recess 65 surfaces 65 surfaces 65 disposed up to twenty 65 degrees from the longitudinal axis 65 of the splice connector installation tool

44, but other angles are possible. FIGS. 5B and 5C illustrates an exemplary angular measurement of the recess surfaces 74 as the angle theta (θ_2) from a longitudinal axis A_{FG} of the fiber guide 60. The longitudinal axis A_{FG} enters the recess 64 at the entry opening 70 and exits the recess 64 at the exit opening 66. When the fiber guide 60 is aligned with the splice connector

installation tool 44, then the axis A_1 and the longitudinal axis A_{FG} are aligned as depicted in FIG. 4A. The recess surfaces 74 may be disposed within fifteen (15) degrees of the axis A_1 to further reduce debris and damage to the optical fiber 48, as another non-limiting example. However, not every portion of the recess surfaces 74 may have the same angular disposition to the longitudinal axis A_{FG} in this embodiment. In other words, compound surfaces/angles are possible with the concepts disclosed. When axis A₁ is aligned with longitudinal axis A_{FG} then the detachable optical fiber guide apparatus is aligned with the splice connector installation tool 44. For example, in FIG. 5B a portion 174 of recess surfaces 74 may be parallel (0 degrees) to the axis A_{FG} , yet portion 176 of the recess surfaces 74 may be fifteen (15) degrees to the axis A_{EG} . The difference in angular orientation reduces debris generation near the exit opening 66 which may be nearest the end portion 52 of the fiber optic connector 46.

Moreover, with continuing reference to FIGS. 5A through 5E, the recess surfaces 74 may include the bottom recess surface portion 76 (FIG. 5C) disposed up to four (4) degrees 20 from the axis A₁ of the splice connector installation tool 44, or preferably up to two (2) degrees, as non-limiting examples. In embodiments where the recess surfaces 74 may have the cross sections CS₁, CS₂ in the curvilinear cross-sectional shapes **160(1)**, **160(2)** (FIGS. **5**D and **5**C respectively) then the bot- 25 tom recess surface portion 76 is a portion of the recess surfaces 74 that is within a vertical geometric plane P_1 (see FIG. **5**C) coincident with the axis A_{FG} . The angular orientation of the bottom recess surface portion 76 may limit the change in vertical direction (Z) experienced by the optical fiber 48. This 30 angular orientation also makes it easier for the optical fiber 48 to be inserted into the fiber entry 54 by reducing an opportunity to misalign the optical fiber 48 vertically with respect to the fiber entry 54.

After the optical fiber 48 is inserted into the fiber entry 54, 35 then the optical fiber 48 may be terminated with the stub optical fiber 116 of the fiber optic connector 46. FIG. 7 shows details of the structural member 101 of the splice connector installation tool 44 which may enable the insertion and termination. The cantilevered pins 142(1), 142(2) including the 40 reference surfaces 100(1), 100(2) may be attached to the structural member 101. The structural member 101 may be disposed between the cam actuator 108 and the housing opening 58. Between the cantilevered pins 142(1), 142(2) may be an orifice 178 enabling the end portion 52 of the fiber optic 45 connector 46 to be accessible to enable insertion of the optical fiber 48. The structural member 101 also may include an opening 180 to remove the fiber optic connector 46 after the optical fiber 48 may be terminated to the stub optical fiber 116 of the fiber optic connector 46.

It is noted that symmetrical elements **78**, **96**, **98**, **100**, **134**, **142**, **160**, F_1 , and F_2 are shown in the embodiment shown, for example, in FIGS. **2A** through **2B**, **4B** through **5E**, **7**, **9** through **10**, and **12B**, but other embodiments could also include one, or more than two of these elements.

FIG. 8 provides an exemplary process 144 for splicing the optical fiber 48 to the stub optical fiber 116 of the fiber optic connector 46 consistent with the splice connector installation tool 44 and the optical fiber guide apparatus 42 as shown in FIGS. 2A through 5E. The process in FIG. 8 will be described 60 in conjunction with FIGS. 2A, 2B, 4A, and 9 through 12B. As shown in FIGS. 2A and 2B, the first step of the process 144 may include providing the splice connector installation tool 44 including the housing 102 forming the internal cavity 112 (step 146 in FIG. 8). The splice connector installation tool 44 may also include the mechanical device 114 at least partially disposed within the internal cavity 112.

18

With continuing reference to FIGS. 2A and 2B, the optical fiber guide apparatus 42 may also include the fiber guide 60 comprising the recess 64 defining the entry opening 70 and the exit opening 66 opposite the entry opening 70 along the longitudinal axis A_1 of the fiber guide 60 (step 148 in FIG. 8). The optical fiber guide apparatus 42 may include the alignment member 62.

Next, as shown in FIG. 9, the exit opening 66 of the fiber guide 60 may be aligned along the longitudinal axis A_1 of the splice connector installation tool 44 using the second alignment member 84 of the optical fiber guide apparatus 42 (step 150 in FIG. 8). This alignment created by the second alignment member 84 defines a maximum distance along the longitudinal axis A_1 that the exit opening 66 can be located away from the axis of rotation AR_1 to prevent the optical fiber guide apparatus from obstructing the end portion 52 of the fiber optic connector 46. The second alignment member 84 may include the clip feature 86 forming a rotatable attachment 88 with the splice connector installation tool 44. The rotatable attachment 88 may be a slidable pivot attachment 90.

Next, as shown in FIG. 10, the exit opening 66 of the fiber guide 60 may be aligned along the third axis A_3 by using the third alignment member 94 of the optical fiber guide apparatus 42 (step 152 in FIG. 8). The third alignment member 94 may align by abutting the alignment surfaces 98(1), 98(2) of the third alignment member 94 against the reference surfaces 100(1), 100(2) of the splice connector installation tool 44. The reference surfaces 100(1), 100(2) may be disposed on the cantilevered pins 142(1), 142(2) which are at least partially disposed within the housing opening 58.

Next, as shown in FIG. 11, the fiber optic connector 46 which includes the end portion 52 may be installed into the splice connector installation tool 44 (step 154 in FIG. 8). The fiber optic connector 46 may be conventionally attached in a manner allowing for movement in the second axis A_2 . The lid 128 may be open as the fiber optic connector 46 is attached.

Next as shown in FIG. 12A, the exit opening 66 of the fiber guide 60 may be aligned in the second axis A_2 with the alignment member 62 by alignably interfacing the alignment member 62 with the movable clamp 80 movably attached to the splice connector installation tool 44 as the movable clamp 80 clamps the end portion 52 of the fiber optic connector 46 (step 155 in FIG. 8). As shown in FIG. 12B, the two surfaces 78(1), 78(2) of the alignment member 62 may abut against the movable clamp 80 as the movable clamp 80 clamps the end portion 52. The two surfaces 78(1), 78(2) may be tapered and the movable clamp 80 may pivot from the splice connector installation tool 44. The exit opening 66 may now be aligned with the end portion 52 of the fiber optic connector 46 with respect to the longitudinal axis A_1 , the axis A_2 , and the axis A_3 .

Next, as shown in FIG. 4A, the optical fiber 48 may be received into the entry opening 70 and the optical fiber 48 guided along the longitudinal axis A_1 of the fiber guide 60 through the exit opening 66 into a housing opening 58 of the splice connector installation tool 44 (step 156 in FIG. 8). The optical fiber 48 may strike the one or more recess surfaces 74 of the fiber guide 60 as the optical fiber 48 may be guided along the longitudinal axis A_1 .

Lastly, the optical fiber 48 may be terminated to the stub optical fiber 116 of the fiber optic connector 46 using the mechanical device 114 (step 158 in FIG. 8). The optical fiber 48 may be inserted through the end portion 52 of the fiber optic connector 46 until the optical fiber 48 is at least in the proximity of the stub optical fiber 116. At least a portion of the

fiber optic connector **46** may be moved by the mechanical device **114** to optically couple the optical fiber **48** to the stub optical fiber **116**

The connector installation tool, the detachable optical fiber guide apparatus, and methods described herein to insert and 5 guide the optical fiber to the stub fiber within the fiber optic connector installed within the splice connector installation tool are applicable to any pair of interconnected optical fibers, and more particularly, between a field optical fiber and an optical fiber of any fiber optic splice connector, including a single fiber or multi-fiber fusion splice or mechanical splice connector. Examples of typical single fiber mechanical splice connectors are provided in U.S. Pat. Nos. 4,755,018; 4,923, 274; 5,040,867; and 5,394,496. Examples of typical multi-fiber mechanical splice connectors are provided in U.S. Pat. 15 Nos. 6,173,097; 6,379,054; 6,439,780; and 6,816,661.

As used herein, it is intended that the terms "fiber optic cables" and/or "optical fibers" include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be up-coated, colored, buffered, 20 ribbonized and/or have other organizing and/or protective structures in a cable, such as one or more tubes, strength members, jackets or the like. The optical fibers disclosed herein can be single mode or multi-mode optical fibers. Likewise, other types of suitable optical fibers include bend-in- 25 sensitive optical fibers, or any other expedient of a medium for transmitting light signals. An example of a bend-insensitive, or bend resistant, optical fiber is ClearCurve® Multimode fiber commercially available from Corning Incorporated of Corning, N.Y. Suitable fibers of this type are 30 disclosed, for example, in U.S. Patent Application Publication Nos. 2008/0166094 and 2009/0169163, the disclosures of which are incorporated herein by reference in their entire-

Many modifications and other embodiments not set forth 35 herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the description and claims are not to be limited to the specific embodiments 40 disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the embodiments cover the modifications and variations of the embodiments provided they come within the scope of the appended claims and their 45 equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

What is claimed is:

- 1. An optical fiber guide apparatus configured to guide an optical fiber into a fiber optic connector installed within a splice connector installation tool, comprising:
 - a fiber guide body;
 - a fiber guide disposed in the fiber guide body, the fiber guide comprising a recess defining an entry opening and an exit opening opposite the entry opening along a longitudinal axis of the fiber guide, the recess configured to receive and guide an optical fiber from the entry opening along the longitudinal axis of the fiber guide through the exit opening into a housing opening of a splice connector installation tool; and
 - an alignment member disposed in the fiber guide body, the alignment member configured to be alignably interfaced with a movable clamp attached to the splice connector 65 installation tool, the movable clamp configured to clamp an end portion of a fiber optic connector within the

20

housing opening for aligning the end portion with the exit opening of the fiber guide;

wherein the alignment member is configured to align the exit opening of the fiber guide disposed in the fiber guide body along a second axis orthogonal to a longitudinal axis of the splice connector installation tool; and

wherein the alignment member includes at least one of two surfaces configured to abut against the movable clamp.

- 2. The optical fiber guide apparatus of claim 1, wherein each of the at least two surfaces is tapered.
 - 3. The optical fiber guide apparatus of claim 1, further comprising a second alignment member configured to limit a position of the exit opening of the fiber guide along the longitudinal axis of the splice connector installation tool.
 - 4. The optical fiber guide apparatus of claim 3, wherein the second alignment member comprises a clip feature configured to form a rotatable attachment with the splice connector installation tool.
 - 5. The optical fiber guide apparatus of claim 4, wherein the rotatable attachment includes a slidable pivot attachment.
 - **6**. The optical fiber guide apparatus of claim **5**, wherein the clip feature includes a concave surface configured to form the slidable pivot attachment.
 - 7. The optical fiber guide apparatus of claim 3, further comprising a third alignment member configured to position the exit opening of the fiber guide along a third axis, and the third axis is orthogonal to the longitudinal axis of the splice connector installation tool and orthogonal to the second axis.
 - 8. The optical fiber guide apparatus of claim 7, wherein the third alignment member comprises at least one alignment surface configured to align the exit opening of the fiber guide along the third axis by abutting against at least one reference surface attached to the splice connector installation tool.
- 9. The optical fiber guide apparatus of claim 8, wherein the at least one alignment surface includes two alignment surfaces that are symmetrical about the longitudinal axis of the fiber guide.
 - 10. An optical fiber termination system, comprising:
 - a splice connector installation tool comprising:
 - a housing forming an internal cavity; and
 - a mechanical device at least partially disposed within the internal cavity configured to perform a splice termination of an optical fiber and a stub optical fiber of a fiber optic connector; and

an optical fiber guide apparatus comprising:

a fiber guide body;

50

- a fiber guide disposed in the fiber guide body, the fiber guide comprising a recess defining an entry opening and an exit opening opposite the entry opening along a longitudinal axis of the fiber guide, the recess configured to receive and guide the optical fiber from the entry opening along the longitudinal axis of the fiber guide through the exit opening into a housing opening of the splice connector installation tool; and
- an alignment member disposed in the fiber guide body, the alignment member alignably interfacing with a movable clamp attached to the splice connector installation tool, the movable clamp clamping an end portion of the fiber optic connector within the housing opening to align the end portion with the exit opening of the fiber guide;
- wherein the alignment member aligns the exit opening of the fiber guide disposed in the fiber guide body along a second axis orthogonal to a longitudinal axis of the splice connector installation tool;
- wherein the alignment member includes at least one of two surfaces abutting against the movable clamp.

- 11. The optical fiber guide apparatus of claim 10, wherein each of the at least two surfaces is tapered.
- 12. The optical fiber guide apparatus of claim 10, wherein the moveable clamp is pivotably attached to the splice connector installation tool.
- 13. The optical fiber guide apparatus of claim 10, further comprising a second alignment member limiting a position of the exit opening of the fiber guide along the longitudinal axis of the splice connector installation tool.
- **14.** The optical fiber guide apparatus of claim **13**, wherein 10 the second alignment member comprises a clip feature forming a rotatable attachment with the splice connector installation tool.
- **15**. The optical fiber guide apparatus of claim **14**, wherein the rotatable attachment includes a slidable pivot attachment. 15
- 16. The optical fiber guide apparatus of claim 15, wherein the clip feature comprises a concave surface forming the slidable pivot attachment to a curved surface attached as part of the splice connector installation tool.
- 17. The optical fiber guide apparatus of claim 16, wherein 20 the curved surface is disposed on a cylindrical pin attached as part of the splice connector installation tool.
- 18. The optical fiber guide apparatus of claim 13, further comprising a third alignment member aligning the exit opening of the fiber guide along a third axis, and the third axis is 25 orthogonal to the longitudinal axis of the splice connector installation tool and orthogonal to the second axis.
- 19. The optical fiber guide apparatus of claim 18, wherein the third alignment member comprises at least one alignment surface aligning the exit opening of the fiber guide along the 30 third axis by abutting against at least one reference surface attached as part of the splice connector installation tool.
- 20. The optical fiber guide apparatus of claim 19, wherein the at least one reference surface is disposed on at least one cantilevered pin of the splice connector installation tool that is 35 disposed within the housing opening.
- **21**. A method for splicing an optical fiber to a stub optical fiber in a fiber optic connector, comprising:
 - providing a splice connector installation tool including a housing forming an internal cavity, and a mechanical 40 device at least partially disposed within the internal cavity;
 - providing an optical fiber guide apparatus comprising a fiber guide body and a fiber guide disposed in the fiber guide body, the fiber guide including a recess defining an 45 entry opening and an exit opening opposite the entry opening along a longitudinal axis of the fiber guide, and the optical fiber guide apparatus includes an alignment member disposed in the fiber guide body;
 - aligning the exit opening of the fiber guide in a direction 50 relative to the splice connector installation tool with the

22

alignment member by alignably interfacing the alignment member with a movable clamp attached to the splice connector installation tool as the movable clamp clamps an end portion of a fiber optic connector;

receiving an optical fiber into the entry opening and guiding the optical fiber along the longitudinal axis of the fiber guide through the exit opening into a housing opening of the splice connector installation tool; and

terminating the optical fiber to a stub optical fiber of the fiber optic connector using the mechanical device;

- wherein in the aligning the exit opening of the fiber guide disposed in the fiber guide body with the alignment member, the aligning in the direction relative to the splice connector installation tool is along a second axis orthogonal to a longitudinal axis of the splice connector installation tool; and
- wherein in the alignably interfacing the alignment member, at least one of two surfaces abut against the movable clamp.
- 22. The method of claim 21, wherein in the alignably interfacing the alignment member, each of the at least one of two surfaces is tapered.
- 23. The method of claim 22, wherein in the alignably interfacing the alignment member, the movable clamp pivots from the splice connector installation tool.
- 24. The method of claim 21, further comprising aligning the exit opening of the fiber guide along the longitudinal axis of the splice connector installation tool using a second alignment member of the optical fiber guide apparatus.
- 25. The method of claim 24, wherein in the aligning the exit opening of the fiber guide along the longitudinal axis of the splice connector installation tool, the using the second alignment member comprises a clip feature forming a rotatable attachment with the splice connector installation tool.
- 26. The method of claim 24, further comprising aligning the exit opening of the fiber guide along a third axis by using a third alignment member of the optical fiber guide apparatus, and the third axis is orthogonal to the longitudinal axis of the splice connector installation tool and orthogonal to the second axis.
- 27. The method of claim 26, wherein the using the third alignment member includes at least one alignment surface of the third alignment member abutting against at least one reference surface of the splice connector installation tool.
- 28. The method of claim 27, wherein in the abutting against the at least one reference surface, the at least one reference surface is disposed on at least one cantilevered pin disposed at least partially within the housing opening.

* * * * *